スライドを作るときに、圏論・代数幾何でよく使いそうなLaTex記法を書き残しました。
もしネットからたどり着いた方がいらっしゃったら、お役立てください。
図(コードは下段!):
コード:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
K_{LD} (p \vert \vert q) = \displaystyle \int q(x) \log \frac{q(x)}{p(x|D)} dx \\ K_{LD} (p \vert \vert q) = 0 \\ \zeta (z) = \int K_{LD} (p (x \vert \theta) \vert \vert q)^{z} p(\theta) d \theta \\ E[F(D^n)] = \lambda \log n - (m-1) \log \log n + R(D^n) \\ K_{LD} (p (x \vert D^n) \vert \vert q) = E[ \Delta F ] = E[ F(D^{n+1}) ] - E[F(D^n)] \\ Y \longrightarrow X_N \longrightarrow \cdots \longrightarrow X \\ \normalfont\textbf{Top} \longrightarrow \normalfont\textbf{Ab} \\ \normalfont\textbf{Ring} \longrightarrow \normalfont\textbf{Top} \\ \exists s \in \mathcal{F}(U) \quad s.t. \quad r_{U_{\lambda} \cap U_{\mu} , U_{\lambda}} (s_{\lambda}) = r_{U_{\lambda} \cap U_{\mu} , U_{\lambda}} (s_{\mu}) \\ \mathcal{F}_p = \varinjlim_{p \in U} \mathcal{F}(U) \\ \mathbb{C}[x_1, \dots , x_n] \\ Spec \mathbb{C}[x_1, \dots , x_n] \\ U(I(f)) = \{p \in Spec \mathbb{C}[x_1, \dots , x_n] \vert f \not\in p \} \\ \mathcal{F}(U(I(f))) = \mathbb{C}(x_1, \dots , x_n) = \\ \{ \displaystyle\frac{h_1}{h_2} \, \vert \, h_1, h_2 \in \mathbb{C}[x_1, \dots , x_n], h_2 \in U(I(f)) \} \\ Spec \mathbb{C}[x_1, \dots , x_n] / I \\ \mathbb{C}[x, y, z] / (x+z^2, y-z^3) \\ \mathbb{C}[x, y] / (x^3 + y^2) \\ \normalfont\textbf{Ring} \longrightarrow \normalfont\textbf{Af-Sch} \\ Spec A \\ Spec A/I \\ (X, O_X) \\ O^m_X = \bigoplus^m O_X \\ O^m_X \rightarrow O^n_X \rightarrow \mathcal{F} \rightarrow 0 \\ \Omega^1_X = d(O_X) \\ \omega_X = \Omega^n_X \\ O_X(-\mathcal{I}) = O_X / O_{\mathcal{I}} \\ O_X(-\mathcal{I}) \, s.t. \, O_{\mathcal{I}} = O_X / O_X(-\mathcal{I}) \\ \mathcal{I} \cdot O_X = g(f^* \mathcal{I}) \\ Pic(X) = Div(X) / \sim \\ O_X(D) = \prod O_X(div(h)) / \sim \\ O_X(-\mathcal{D}) \\ \mathcal{L} \, s.t. \, \mathcal{L} \vert_U = O^1_X \\ (X, O_\mathcal{I}) \\ \mathbb{P}^{n-1} \\ \mathbb{P}^{m-1} \\ \cong \mathbb{A}^{n} \\ \mathbb{A}^{m} \\ X \times \mathbb{P}^{n-1} \\ D = \mu^* (X \backslash \{0\}) + E \\ (a,b,c,d,e,f,g,h) \rightarrow (a,ab) \cup (cd^2,d) \cup (e^3f, e^2f) \cup (g^2h^3, gh^2) \\ K_{Z_1} = (K_{X_1} + Z_1) \vert_{Z_1} \\ = (\mu^*_1 K_X + E_1 + \mu^*_1 Z - 2 E_1) \vert_{Z_1} \\ = (\mu^*_1 K_X + \mu^*_1 Z - E_1) \vert_{Z_1} \\ = \mu^*_1((K_X + Z) \vert_{Z}) - 2P_1 \\ = \mu^*_1 K_Z - 2P_1 \\ K_{Z_{32}} = \mu^*_3 K_{Z_2} + \mu^{-1}_{3*} P_2 + \mu^{-1}_{3*} \mu^{-1}_{2*} P_1 + \mu^{-1}_{3*} \mu^{-1}_{2*} \mu^{-1}_{1*} P \\ Y \displaystyle\xrightarrow[]{\mu_n} X_{n-1} \xrightarrow[]{\mu_{n-1}} \cdots \xrightarrow[]{\mu_1} X \\ D_{n+1} = \mu^{-1}_{n+1*} D_{n} + E_{n+1} \leftarrow D_{n} \\ D = D_1 + 2 D_2 + 3 D_3 \\ K_X \in D/\sim, O_X(D), O_X(-D), Z \subset X \\ \mathcal{F/G}(U) = \{ s \in \prod_{P \in U} (\mathcal{F/G})_P \} \\ \mathcal{F}_{i-1} \longrightarrow \mathcal{F}_i \longrightarrow \mathcal{F}_{i+1} \\ |
おまけ mathematicaコード
1 2 3 4 5 6 7 8 9 10 |
ContourPlot[x^2+y^3==0, {x, -4,4}, {y, -4,4}] ParametricPlot3D[{{z^2,-z^3, z}, {z^2,-z^3, 0} }, {z, -1,1}] ContourPlot[x^2== y -y^3 / x^2, {x, -0.45, 0.45}, {y, -0.25, 0.25}] ContourPlot[1 + x^1*y^3==0, {x, -4,4}, {y, -4,4}] ContourPlot[x^2 + y^1==0, {x, -4,4}, {y, -4,4}] ContourPlot[x^1 + y^1==0, {x, -4,4}, {y, -4,4}] ContourPlot[1 + x^2*y^1==0, {x, -4,4}, {y, -4,4}] ContourPlot[1 + x^3*y^1==0, {x, -4,4}, {y, -4,4}] ContourPlot[(1 + x^1)*y^1==0, {x, -4,4}, {y, -4,4}] |